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Experimental  
uncertainty in the sciences
The probability of new knowledge can be accurately 
quantified in physics: On 31.7.2012, documented evidence 
of the existence of the last unknown elementary particle, 
the long-sought-after Higgs Boson appeared on the 
Preprint Server arXiv.org – with a significance of 5.9 
standard deviations [1]. In climate science, too, 
experimental uncertainty is part of all predictive 
knowledge: In its fourth report, the Working Group I of 
the Intergovernmental Panel on Climate Change (IPCC) 
published the exact terminology to be used for translating 
quantified uncertainties and probabilities into words [2]. 
These two examples from very different areas illustrate 
that scientific knowledge and forecasts often cannot be 
presented in a yes/no, right/wrong, black/white way, but 
are subject to a particular degree of uncertainty.

In pharmaceutical research, the vast majority of results 
from studies and measurements are part of a broader 
distribution: The best-known cases are the results of 
clinical studies that are assessed according to whether  
the health of test persons receiving a new medication 
improves significantly when compared to a group 
receiving placebos or the current therapeutical gold 
standard . In order to be able to accurately answer these 
questions – questions on whose answers depends health 
and a great deal of money – statistics is required to 
differentiate true effectiveness from spurious correlations. 
In fact, statistics and experimental uncertainty play a 
crucial part in the non-clinical hit-to-lead and lead 
optimisation phases.

Rational computer-based  
drug design
Classic drug design runs in iterative cycles of chemical 
synthesis and biological testing, which often extend over 

many years. In the early phase of the drug design process, 
the primary aim is to develop a substance that binds to 
the target protein with a high affinity. In later phases, 
other properties such as selectivity towards other proteins 
that can impart toxic side-effects, and the absorption, 
distribution, metabolism and excretion (ADME) properties 
of the potential drug are also optimized.

Within one cycle, the next substances to be synthesised 
and tested are either selected by trial-and-error, or they 
are selected in a rational way. Rational selection is ideally 
based on all the chemical and biological knowledge 
previously gathered on the target protein and ADME-Tox 
properties. Rational selection allows developing optimized 
clinical candidates more quickly than pure trial-and-
error. A key component of rational selection strategies is 
Computer-Aided Drug Design. Its job is to bundle all of the 
existing knowledge and to search for the most promising 
chemical modifications. Through computer-aided design, 
the number of design cycles can be significantly reduced 
and a great deal of time and money saved. In 2013, 
Martin Karplus, Michael Levitt and Arieh Warshel received 
the Nobel Prize for Chemistry in 2013 for their contribu-
tions to understanding the chemical forces that drive 
protein-ligand recognition, which is nowadays part of the 
basis for computer-based drug design.

Binding constants:  
The number-one criterion  
in rational drug design
Most of the important properties to be optimised during 
the different drug design phases are measured using 
protein-ligand binding constants. The dissociation 
constant Kd of the protein-ligand complex is linked to the 
Gibbs free energy for binding ΔG0 according to 

Biology is naturally complex, and even the results of the simplest biochemical experiments are afflicted with 
experimental noise that cannot be ignored. However, biochemical measurements are the backbone of modern 
pharmaceutical research. If the experimental uncertainty is underestimated, biochemical data can be very 
easily over-interpreted. An appropriate consideration of experimental uncertainty can be achieved with very 
little additional effort, and this helps to differentiate knowledge from ignorance and to avoid taking wrong 
tracks that can be time-consuming and expensive.
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where T stands for the temperature, and R is the ideal  
gas constant. In biochemical assays, it is frequently not 
the Kd values that are determined but IC50 or Ki values. 
IC50 values are the ligand concentration the function of 
the protein is reduced by 50 %. With a few constraints,  
Ki values, the dissociation constants of enzyme inhibitors, 
can be calculated from IC50 values.

At room temperature, the difference in Ki/d by a factor  
of ten corresponds to a difference in binding energy of 
around 1.4 kcal/mol. Often, only small differences far 
below 1.4 kcal/mol are achieved through modifications  
in the chemical structure. These are marginal cases, 
where rules of thumb are used to assess the significance  
of observed differences. The individual rules of thumb 
vary strongly, depending on the past history of the user.

As biology is complex per se and many factors influence 
the outcome of biochemical assays, the measured binding 
constants contain a certain amount of experimental 
uncertainty. If the experimental uncertainty is underesti-
mated, there is a risk that small differences in binding 
constants are over-interpreted and structure activity 
relationships are deduced where none exist. On the other 
hand, if the experimental uncertainty is overestimated, 
signals present in the data will not be optimally used.  
The two situations of over- and under-estimating experi- 
mental uncertainty cost time and money. They slow down 
the design of drugs because the project team is either not 
using all the information contained in the data, or 
focussing on spurious facts.

How much experimental  
uncertainty do binding  
constants contain?
The binding constants stated in the scientific literature 
fluctuate considerably, but generally underestimate the 
actual variation in measured values. An impression of 
published inaccuracies can be gained from the CSAR 
NRC-HiQ dataset (www.csardock.org). Here, published 
biochemical affinities, including standard deviations, 
have been gathered for 157 diverse chemical and bio-
chemical protein-ligand systems. The median of the 
published standard deviations is 0.044 log Kd/i, with the 
smallest values being 0.001 and 0.002 log Kd/i. For every 
scientist who has already tried to reproduce the Ki values 
from the literature, it is clear that these experimental 
uncertainties are much too low.

Fig. 1 Pairs of independently measured pKi values on the same 
protein-ligand system from CHEMBL14. In total, there are 8.524 
pairs for 2.046 protein-ligand systems in CHEMBL14. The diagonals 
indicate the line of identical measurements and the boundaries  
at which the differences are more than 2.5 log units [4]. The 
correlation for all pairs with less than 2.5 log units is R2 = 0.66.

A more realistic idea about the experimental uncertainty 
can be obtained from comparing Ki values which have 
been independently measured for the same protein- ligand 
systems. Figure 1 shows such a comparison of all indepen-
dently measured Ki values from the ChEMBL database [3].

Assuming a simple normal distribution for the experimen-
tal errors, an experimental inaccuracy for heterogeneous 
Ki values of 0.54 log Ki units can be calculated from this 
comparison [4]. This means that two independent Ki 
measurements for the same protein-ligand system can  
be found with around 68 % probability within an interval 
of ±0.54 log Ki units. Ki values have to be be comparable 
because they are physical binding constants. For the more 
frequently measured IC50 values, the standard deviation of 
the experimental variation is 0.69 log units [5]. IC50 
values measured in different experimental setups do not 
have to be comparable. Nevertheless, in practice they are 
frequently compared with each other, for example in 
selectivity considerations. For chemical standards, which 
were frequently measured in the same assay at Novartis in 
Basel, we calculated an experimental uncertainty with a 
standard deviation of 0.18 to 0.35 log units, depending on 
the system and experimental structure [5]. This is 
equivalent to a factor of 1.5 to 2.2. From a scientific point 
of view, the reasons for the comparatively high experi-
mental uncertainty are rather poorly understood. Faults 
in the measuring devices that assess the biological signal 
appear to be the least significant problem, as can be 
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deduced from the small uncertainties (repeatability) 
reported in the literature. Other possible reasons for high 
levels of uncertainty include the quality and stability of 
the biological material, the purity of the measured 
chemical substances, aggregation of the active ingredients 
and variations in temperature, air humidity and pressure. 
One further source of errors, which should not be 
underestimated, are errors in the dilution series. Some 
badly soluble substances remain adhering to the walls  
of the pipette during the dilution process, which leads to 
concentrations that are too low by orders of magnitude, 
especially for higher dilutions. Ekins et al. have recently 
shown that structural interpretations based on such data 
may be completely incorrect [6].

Tightening the thresholds: 
How experimental uncertainty 
influences modelling
Here, I will use two examples to show how the experimen-
tal uncertainty can appropriately be taken into account in 
data analysis and modelling.

A standard application in computer-based drug design 
involves QSAR and docking models. Here, various 
structural chemical and biochemical properties are 
correlated with the measured activity. The quality of such 
models is usually quantified using the R2, the fraction of 
the explained variance of the measured data. If part of the 
measured variance consists of experimental uncertainty 
(noise), the maximum explainable part of the variance 
R2

max can be calculated according to

where σnoise is the standard deviation of experimental 
uncertainty and σtot is the standard deviation of the entire 
measured data. Thus, R2 can only be interpreted if the 
experimental uncertainty of the data is known. Depending 
on the signal-to-noise ratio, R2

max can become very small.

A second example for the importance of experimental 
uncertainty is matched molecular pair analysis (MMPA). 
MMPA is a method for chemical knowledge extraction 
from huge databases and is increasingly being applied in 
lead optimisation. Here, activity differences between two 
molecules are compared with the differences in chemical 
substitutions. For carrying out MMPA, a large set of 
binding data is assembled for molecule pairs which  
all differ by the same exchange of a functional group. 
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From the distribution of the activity differences, predic-
tions about the future effects of the same functional  
group exchange on new molecules are made. As an 
example, Figure 2 shows the distribution of the affinity 
differences from the hERG channel for all pairs present in  
ChEMBL14, where a fluorine is converted into a chlorine.

The accuracy of MMPA predictions crucially depends  
on the standard deviation of the activity differences.  
The smaller the standard deviation, the more accurate  
the prediction. However, the standard deviation can never 
be zero due to the omnipresent experimental uncertainty. 
The minimal standard deviation for the pairs σpairs,min, 
which is to be expected due to  the experimental uncer-
tainty, can be calculated[7] according to.

Assuming an experimental uncertainty σnoise =0.2 log 
units for hERG measurements from the same laboratory, 
this results in a minimum standard deviation σpairs,min  
of 0.28 log units for the pairs – very close to the observed 
standard deviation of the hERG affinity differences of  
0.33 for the F>>Cl transformation. The observed standard 
deviation can thus be almost completely explained 
through experimental inaccuracy and, unlike other 
transformations with higher standard deviations, there is 
no indication from the database that specific environmen-
tal effects influence the differences. The next exciting step 
is to now verify the binding constants of the pairs with the 
highest and lowest difference in order to examine the 
theory.

Outlook: Control through  
understanding
Experimental uncertainties in biochemical measurements 
can have a great influence on the interpretation of data 
and thus the number of optimisation cycles in drug 
design. At the same time, the origin of the experimental 
uncertainty is relatively poorly understood from a 
scientific point of view. Important steps in assessing the 
source of the observed variations include a deeper 
understanding of the dilution-series errors and the 
variability of the biological material, and a routine 
inspection of the chemical purity of the measured 
substances.

Existing uncertainties can be estimated from indepen-
dently repeated measurements. In order to understand 

Fig. 2 Distribution of hERG binding affinity differences for all F>>Cl 
transformations from molecule pairs measured in the same 
laboratory and assay. The standard deviation of the distribution 
is 0.33 log units; the average increase of hERG affinity is  0.29 log 
units.

experimental uncertainty and to be able to trace differ-
ences in activity back to specific protein-ligand interac-
tions, it is important that multiple measurements are 
carried out in a way that is completely independent.  
With better data from systematically repeated independent 
measurements, the error models can be refined in a 
subsequent step: for example, it is likely that the experi-
mental uncertainty depends on the measurement range 
(very low and very high activity is measured more poorly 
than average activity) and on substance properties such as 
solubility and lipophilicity.

A further fundamental improvement to the understanding 
of experimental inaccuracy and test results can also be 
achieved by consulting statistical experts in the develop-
ment of new assays. This is already the case in some 
pharmaceutical companies.
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